ATLAS 2.0 Documentation
Complete platform specification for the next-generation agentic business planning system.
๐ About This Document
This documentation covers the complete technical specification, architecture, and implementation details for ATLAS 2.0. For user guides, see the Help Center.
Core Philosophy
"A business plan is not a document. It's a living strategy that adapts, learns, and executes."
ATLAS 2.0 represents a paradigm shift in business planning technology. While existing solutions focus on document creation, ATLAS 2.0 is designed as an Autonomous Business Intelligence System that doesn't just help you write a planโit actively builds your business alongside you.
What Makes ATLAS Different
- Agentic Architecture: Six specialized AI agents work autonomously on research, analysis, and generation
- Conversational Interface: Build your entire plan through natural dialogueโno forms or templates
- Real-time Intelligence: Continuous market research, competitor monitoring, and regulatory tracking
- Predictive Simulation: Monte Carlo modeling to forecast business outcomes before you invest
- Post-Plan Continuity: Seamless transition from planning to execution with Launch Sequence
Quick Start
Get your first business plan started in under 5 minutes:
- Create Account: Sign up at atlas-platform.io (free tier available)
- Start Conversation: Click "New Project" and describe your business idea
- Let Agents Work: ATLAS dispatches research agents while you continue the conversation
- Review & Refine: Access the Intelligence Dashboard to see findings and adjust
- Generate Documents: Export your plan in any format when ready
System Architecture
ATLAS 2.0 is built on a Multi-Agent Orchestration Framework where specialized AI agents work autonomously while a central Conductor coordinates their efforts.
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ USER INTERFACE LAYER โ
โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ
โ โ Web โ โ Mobile โ โ Voice โ โ AR/VR โ โ API โ โ
โ โโโโโโฌโโโโโโ โโโโโโฌโโโโโโ โโโโโโฌโโโโโโ โโโโโโฌโโโโโโ โโโโโโฌโโโโโโ โ
โโโโโโโโโผโโโโโโโโโโโโโผโโโโโโโโโโโโโผโโโโโโโโโโโโโผโโโโโโโโโโโโโผโโโโโโโโโ
โโโโโโโโโโโโโโดโโโโโโโโโโโโโผโโโโโโโโโโโโโดโโโโโโโโโโโโโ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ ORCHESTRATION LAYER โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ CONDUCTOR AGENT โ โ
โ โ โข Goal Decomposition โข Agent Coordination โ โ
โ โ โข Resource Allocation โข Human-in-Loop Triggers โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ SPECIALIST AGENT SWARM โ
โ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โ
โ โ RESEARCH โ โ FINANCIAL โ โ STRATEGY โ โ
โ โ AGENT โ โ AGENT โ โ AGENT โ โ
โ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โ
โ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โ
โ โ DOCUMENT โ โ CONNECT โ โ OPERATIONS โ โ
โ โ AGENT โ โ AGENT โ โ AGENT โ โ
โ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ INTELLIGENCE LAYER โ
โ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โ โ MEMORY โ โ KNOWLEDGE โ โ LEARNING โ โ
โ โ SYSTEM โ โ GRAPH โ โ ENGINE โ โ
โ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ DATA LAYER โ
โ โโโโโโโโโโโโโ โโโโโโโโโโโโโ โโโโโโโโโโโโโ โโโโโโโโโโโโโ โ
โ โPostgreSQL โ โ Vector โ โ Redis โ โ S3 โ โ
โ โ + JSONB โ โ Store โ โ Cache โ โ Storage โ โ
โ โโโโโโโโโโโโโ โโโโโโโโโโโโโ โโโโโโโโโโโโโ โโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
The Agent Swarm
Six specialized agents operate in parallel, each with distinct capabilities:
| Agent | Responsibilities | Data Sources |
|---|---|---|
| Research | Market analysis, competitor intelligence, location data, regulatory requirements | IBISWorld, Census Bureau, Google Maps, State DBs |
| Financial | Projections, scenarios, unit economics, validation against benchmarks | Industry benchmarks, Fed data, historical patterns |
| Strategy | Positioning, canvases, SWOT, Porter's Five Forces, roadmaps | Research agent outputs, user inputs |
| Document | Plan generation, formatting, versioning, multi-format export | All agent outputs, user preferences |
| Connect | Investor matching, lender discovery, partnership identification | Crunchbase, PitchBook, AngelList, LinkedIn |
| Operations | Supplier discovery, equipment sourcing, compliance tracking | B2B directories, regulatory databases |
Pillar 1: GENESIS โ Idea Crystallization
The "10-Minute Business" experience starts with a conversation, not a form:
ATLAS: "Tell me about the business you're dreaming of.
Don't worry about structureโjust share your vision."
USER: "I want to open a cheesecake shop in a small town..."
ATLAS: "I love it. Let me understand more...
โ Who do you see as your ideal customer?
โ What makes your cheesecakes special?
โ Do you have a location in mind?
Take your timeโI'll listen and build while we talk."
Behind the Scenes
- Natural Language Understanding โ Extracts entities, concepts, constraints
- Industry Classification โ Maps to NAICS codes, identifies regulatory frameworks
- Initial Research Dispatch โ Agents begin market research immediately
- Assumption Generation โ Creates testable hypotheses about the business
The Oracle โ Predictive Simulation
๐ฎ New-to-World Feature
Run your entire business virtually before spending a dollar.
The Oracle runs Monte Carlo simulations across 10,000 scenarios to provide:
- Success Probability Score โ Overall likelihood of achieving profitability
- Key Risk Factors โ Specific variables that most affect outcomes
- Cash Flow Stress Testing โ Identify when and why cash runs low
- Optimal Launch Timing โ Best month/season to open based on data
- Failure Mode Analysis โ Specific scenarios that lead to closure
ATLAS: "I've simulated 10,000 versions of your business
over the next 3 years. Here's what I found:
๐ Success Probability: 72%
Key Insights:
โ Cash is tightest in Month 4 (87% of failures happen here)
โ Summer seasonal boost is critical to your model
โ Adding delivery increases success rate to 81%
Want to explore different scenarios?"
Technology Stack
Frontend
| Framework | Next.js 14+ (App Router) |
| Language | TypeScript (strict mode) |
| Styling | Tailwind CSS + CSS Modules |
| State | Zustand + React Query |
| Animations | Framer Motion |
| Charts | D3.js + Recharts |
Backend
| Runtime | Node.js 20+ |
| Framework | Express / Fastify |
| API | REST + GraphQL (Apollo) |
| Auth | NextAuth.js + OAuth 2.0 |
| Queue | Bull + Redis |
AI/ML Layer
| LLM | Claude API (Anthropic) |
| Embeddings | OpenAI / Cohere |
| Vector Store | Pinecone / Weaviate |
| Orchestration | LangChain / AutoGen |
| Research | Perplexity API / Tavily |
API Reference
Core Endpoints
/api/v1:
/projects:
GET - List user's projects
POST - Create new project
/{id}:
GET - Get project details
PUT - Update project
DELETE - Archive project
/agents:
POST - Dispatch research request
/{task_id}:
GET - Check task status
DELETE - Cancel task
/documents:
GET - List documents
POST - Generate document
/{id}/export - Export to format
/chat:
POST - Send message to ATLAS
/history - Conversation history
Security Architecture
| Authentication | OAuth 2.0, Magic Links, 2FA (TOTP), Passkeys (WebAuthn) |
| Authorization | RBAC with project and document-level permissions |
| Encryption | AES-256 at rest, TLS 1.3 in transit |
| Compliance | SOC 2 Type II, GDPR, CCPA |
| Audit | Full logging, access tracking, change history |
Last updated: January 2026 ยท Version 2.0.0
Questions? Contact docs@atlas-platform.io